OK-10.20

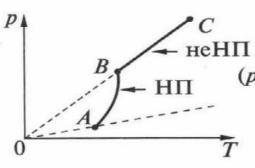
ВЗАИМНЫЕ ПРЕВРАЩЕНИЯ ЖИДКОСТЕЙ И ГАЗОВ

жидкость

парообразование

конденсация

жидкость

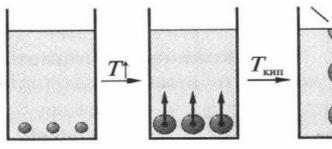

 $v_{\text{исп.}} = f(\text{рода ж.}, T, S \text{пов-ти, ветра})$

- вылетают энергичные мол-лы
- **И** при любой T
- И со свободной пов-ти жидкости

Насыщенный пар

пар, находящийся в ДР со своей жидкостью.

$$\Pi p_{\text{н.п.}} = nkT
(p_{\text{н.п.}} \uparrow \text{ за счет } \uparrow n \text{ и } \uparrow T)
p_{\text{н.п.}} = f(T)
p_{\text{н.п.}} \neq f(V)$$



Кипение

- рода ж.
- $-p_{\text{внешн}}$

при $\uparrow p_{\text{внешн}} \Rightarrow \uparrow T_{\text{кип}}$

кипение $p_{\text{нп}} = p_{\text{*}}$

Влажность воздуха

содержание водяного пара в воздухе

Парциальное давление водяного пара — p водяного пара, если бы все остальные газы отсутствовали.

$\varphi = \frac{p}{p_{\scriptscriptstyle \mathrm{H.II.}}} 100\%$

Относительная влажность (ф)

p — парц. давление водяного пара при данной T $p_{\scriptscriptstyle \mathrm{H.f.}}$ — давление насыщенного пара при той же T

Прибор: психрометр

На сайте классная физика можно просмотреть видео уроки. Последний фильм обязательно в учебнике информации очень мало по данной теме.

Ссылки:

http://class-fizika.spb.ru/index.php/vu/1274-vu10-126 http://class-fizika.spb.ru/index.php/vu/447-vu10-47 http://class-fizika.spb.ru/index.php/vu/1275-vu10-127 http://class-fizika.spb.ru/index.php/vu/1278-vu10-130

6.4. Влажность воздуха

Примеры решения задач

1. Чему равна относительная влажность воздуха при температуре 30 °C, если роса выпала при температуре 17 °C?

Дано: $t = 30 \, ^{\circ}\text{C}$ $t_p = 17 \, ^{\circ}\text{C}$ $\sigma = 7$

Решение:

Относительная влажность воздуха — величина, равная отношению абсолютной влажности воздуха (p) к парциальному давлению (p_0) насыщенного пара при данной температуре:

$$\varphi = \frac{p}{p_0} \cdot 100\%.$$

Поскольку роса выпала при температуре 17 °C, следовательно, при этой температуре пар, находящийся в воздухе, стал насыщенным. Найдём по таблице давление насыщенного пара при температуре 17 °C: p=1,93 кПа. Это и есть абсолютная влажность воздуха при температуре 17 °C.

Давление насыщенного пара при температуре 30 °C $p_0 = 4,24$ кПа. Относительная влажность, следовательно, равна

$$\phi = \frac{1.93 \; \kappa \Pi a}{4.24 \; \kappa \Pi a} \; \cdot 100\% = 45.5\% \; .$$

Ответ: $\phi = 45,5\%$.

2. Сухой термометр психрометра показывает температуру 22 °C, а влажный — 15 °C. Чему равна абсолютная и относительная влажность воздуха? Чему равна точка росы для этих условий?

Дано: $t_{\rm c} = 22\,^{\circ}{\rm C}$ $t_{\rm вл} = 15\,^{\circ}{\rm C}$ $\frac{t_{\rm вл} = 15\,^{\circ}{\rm C}}{p-?}$ $\varphi-?$ $t_{\rm p}-?$

Решение:

По психрометрической таблице найдём относительную влажность воздуха. Разность показаний сухого и влажного термометров составляет $\Delta t=7\,^{\circ}\mathrm{C}$. На пересечении строки $22\,^{\circ}\mathrm{C}$ (показания сухого термометра) и столбца $7\,^{\circ}\mathrm{C}$ (разность показаний сухого и влажного термометров) находим значение относительной влажности воздуха: $\phi=47\%$.

Согласно таблице давление насыщенного пара при температуре 22 °C $p_0=2,64$ кПа. Зная относительную влажность воздуха $\phi=\frac{p}{p_0}\cdot 100\%$ и

давление насыщенного пара при 22 °C, найдём абсолютную влажность воздуха при этой температуре: $p=\frac{p_0\,\phi}{100\,\%}$.

$$p = 2,64 \text{ } \text{к} \Pi \text{a} \cdot 0,47 = 1,24 \text{ } \text{к} \Pi \text{a}.$$

Точка росы — температура, при которой водяной пар, находящийся в воздухе, становится насыщенным. Чтобы узнать точку росы, нужно определить по таблице температуру, соответствующую давлению насыщенного пара $p_0=p=1,24$ кПа. Следовательно, точка росы $t_{\rm p}=10$ °C.

Ответ: $\phi = 47\%$; p = 1,24 кПа; $t_p = 10$ °C.

Залачи лля	самостоятельного	пешения
<i>Јадачи дил</i>	Calviocionicionolo	решения

131. Точка	росы	при	нормальном	атмосферном	давлении	составляет
-------------------	------	-----	------------	-------------	----------	------------

- **132.**Чему равна абсолютная влажность воздуха в жаркий летний день при температуре 30 °C, если роса выпала при температуре 16 °C?
- **133.**Чему равна относительная влажность воздуха при температуре 25 °C, если роса выпала при температуре 12 °C?
- **134.**Относительная влажность воздуха при 20 °C равна 60%. Какова абсолютная влажность воздуха?
- **135.**Относительная влажность воздуха вечером при 16 °C равна 55%. Выпадет ли роса, если ночью температура понизится до 8 °C?
- 136. Чему равна относительная влажность воздуха, если сухой термометр психрометра показывает температуру 25°C, а влажный 16°C? Какова абсолютная влажность воздуха?
- **137.**Сухой термометр психрометра показывает температуру 30 °C. Относительная влажность воздуха при этом равна 70%. Чему равны абсолютная влажность воздуха и показания влажного термометра?
- **138***.Определите объём воды, которая сконденсируется в воздухе объёмом 1 м^3 , если его температура изменится от 28 до 12 °C. Начальная относительная влажность воздуха 75%.

2. Для определения поверхностного натяжения жидкости использовали пипетку с диаметром выходного отверстия d=2,3 мм. Масса 42 капель оказалась равной M=2,2 г. Чему равно поверхностное натяжение жидкости?

Дано:	СИ
d=2,3 mm	$2,3 \cdot 10^{-3}$ м
n=42	9 9 - 10-3
$M=2,2 \mathrm{\ r}$ $g=10 \mathrm{\ m/c^2}$	2,2 · 10 ⁻³ кг
$\frac{g}{\sigma-?}$	
•	

Сила поверхностного натяжения жидкости равна силе тяжести, действующей на каплю: F=mg. Масса одной капли равна массе n капель, делённой на число капель: $m=\frac{M}{n}$. Поверхностное натя-

жение равно отношению силы поверхностного натяжения к длине границы поверхностного слоя жидкости $l=2\pi r=\pi d$, т. е. к длине окружности выходного отверстия пипетки:

$$\sigma = \frac{F}{l} = \frac{F}{\pi d} = \frac{mg}{\pi d} = \frac{Mg}{n\pi d}.$$

$$[\sigma] = \frac{\kappa \Gamma \cdot M/c^2}{M} = \frac{H}{M}.$$

$$\sigma = \frac{2.2 \cdot 10^{-3} \cdot 10}{42 \cdot 3.14 \cdot 2.3 \cdot 10^{-3}} = 7.25 \cdot 10^{-2} \text{ H/m} = 72.5 \text{ mH/m}.$$

Ответ: $\sigma = 72.5 \text{ мH/м}.$

3. В двух капиллярных трубках разного диаметра, опущенных в воду, установилась разность уровней 1,3 см. При опускании этих же трубок в спирт разность уровней оказалась 0,5 см. Определите поверхностное натяжение спирта, если поверхностное натяжение воды 73 мН/м.

Дано:
$\Delta h_1 = 1,3 \text{ cm}$
$\Delta h_2 = 0.5 \text{ cm}$
$\sigma_1 = 73 \text{ mH/m}$
$ ho_1=10^3\mathrm{kr/m^3}$
$\rho_2 = 0.7 \cdot 10^3 \mathrm{kr/m^3}$
$\sigma_2 - ?$

CИ
 Решение:

$$1,3 \cdot 10^{-2}$$
 м
 Высота жидкости в капилляре вычисляется по формуле:

 $73 \cdot 10^{-3}$ Н/м
 $h = \frac{2\sigma}{\rho gr}$.

 Разность уровней воды в капил-

$$h=\frac{2\sigma}{\rho gr}.$$

Разность уровней воды в капиллярных трубках Δh_1 равна:

$$\Delta h_1 = \frac{2\sigma}{\rho_1 g} \left(\frac{1}{r_1} - \frac{1}{r_2} \right),$$

где σ_1 и ρ_1 — соответственно поверхностное натяжение и плотность воды, r_1 и r_2 — радиусы капиллярных трубок.

Разность уровней спирта в капиллярных трубках Δh_2 равна:

$$\Delta h_2 = \frac{2\sigma_2}{\rho_2 g} \left(\frac{1}{r_1} - \frac{1}{r_2} \right),$$

где σ_2 и ρ_2 — соответственно поверхностное натяжение и плотность спирта.

Запишем отношение разности уровней спирта к разности уровней воды:

$$\frac{\Delta h_2}{\Delta h_1} = \frac{\sigma_2 \rho_1}{\rho_2 \sigma_1}.$$

Откуда

$$\sigma_2 = \frac{\Delta h_2 \rho_2 \sigma_1}{\Delta h_1 \rho_1}.$$

$$[\sigma] = \frac{\mathbf{M} \cdot \frac{\mathbf{K}\mathbf{\Gamma}}{\mathbf{M}^3} \cdot \frac{\mathbf{H}}{\mathbf{M}}}{\mathbf{M} \cdot \frac{\mathbf{M} \cdot \mathbf{K}\mathbf{\Gamma}}{\mathbf{M}^3}} = \frac{\mathbf{H}}{\mathbf{M}}.$$

$$\sigma_2 = \frac{0.5 \cdot 10^{-2} \cdot 0.7 \cdot 10^3 \cdot 73 \cdot 10^{-3}}{1.3 \cdot 10^{-2} \cdot 10^3} \approx 0.02 \; H/\text{m}.$$

Otbet: $\sigma_2 \approx 0.02 \text{ H/m}$.

Решить самостоятельно

Дано:

158. Для измерения поверхностного натяжения жидкости была использована пипетка с диаметром выходного отверстия 2 мм. Масса 40 капель составила 1,9 г. Чему равно поверхностное натяжение жидкости?

СИ Решение:

_	
C)твет:
159 .г	Іочему вода поднимается вверх по капиллярам? От чего зависит
В	ысота подъёма жидкости в капилляре?
– 160.⊥	Іочему уровень ртути в капилляре ниже уровня ртути в сосуде,
	который он опущен?

161.Почему фломастером легко писать на плотной бумаге, трудно — на промокательной бумаге и невозможно — на промасленной?